Quiz 6 Chemical Engineering Thermodynamics February 16, 2017

Homework 4.30 involved a two-stage compressor with inter-stage cooling to produce liquid propane. The result of that analysis was $W_I = 150 \text{ kJ/kg}$, $W_{II} = 250 \text{ kJ/kg}$, $Q_I = 160 \text{ kJ/kg}$, and $Q_{II} = 560 \text{ kJ/kg}$ with the final product having q = 0.48 (51% liquid). It was stated in class that a multistage compressor is more efficient compared to a single stage compressor. Redo this calculation for a single stage compressor using the following table for input parameters

		Τ,	Ρ,			Н,	S,
	State	°F	Мра	ηθ	q	kJ/kg	Btu/lb-F°
1	V	80	0.1		-		
2'	V		4.5		-		
2	V		4.5	0.80	-		
3	V	116			-		
4	V/L		0.1				

-Obtain the work for the compressor and compare it with the sum of the work for the two compressors given above.

-Obtain the cooling, Q, and compare it with the sum of the Q's from the two stage compressor. -Finally, obtain the fraction liquefied in the last stage and compare it with the fraction obtained from the two stage compressor.

-Is the dual stage compression more efficient? What is the downside to dual stage compression?

Quiz 6

	Stabel	TOF	Mra	16	8	H 14	Stal 16-90
TT	V	80	0.1			980	1.47
21	V	350	4,5		_	1200	1.47
12	V	390	4.1	0,0	_	1260	1.30
12	×/	116	4.5	9	-	640	1.12
17	4	00	10.1	1	0.48	640	1.15
19	L/U	03		1	1. 10		1

W = 1200 45 -980 45 = 220 Kg $W_1 = \frac{2204fl_2}{0.8} = 275kT$ $\frac{1}{1+2} = 980+275 = 1260 \text{ kT/kg}$ $Q_{I} = 1260kr - 640kr - 620kr$

 $H_{0,IM/n}^{U} = 850 \text{ hs} \qquad 640^{M_{M}} = 430 \text{ hs} \qquad 640^{M_{M}} = 430 \text{ hs} \qquad 640^{M_{M}} = 430 \text{ hs} \qquad 640^{M_{M}} - 430 \text{ hs} \qquad 9 \text{ hs} \qquad 640^{M_{M}} - 430 \text{ hs} \qquad 9 \text{ hs}$

E.11 PRESSURE-ENTHALPY DIAGRAM FOR PROPANE

(Source: NIST, Thermophysics Division, Boulder, CO, USA, used with permission.

